
N O V A S - C

Naval Observatory Vector Astrometry Subroutines
C Language Version 2.0

J. A. Bangert
U. S. Naval Observatory

Based on algorithms and Fortran code by:
G. H. Kaplan

U. S. Naval Observatory

Version 1.0: 7 June 1996
Version 2.0: 1 December 1998

2

CONTENTS

1.0 Introduction

2.0 Getting Started With NOVAS-C
2.1 File Overview
2.2 Installation

3.0 Function Overview
3.1 Function List
3.2 Ephemeris Functions

3.2.1 Major Planets, Sun, and Moon
3.2.2 Minor Planets
3.2.3 Other Bodies and Ephemerides

3.3 Important Data Structures
3.3.1 Structure body
3.3.2 Structure site_info
3.3.3 Structure cat_entry

4.0 Important Functions in NOVAS-C
4.1 APP_STAR
4.2 TOPO_STAR
4.3 APP_PLANET
4.4 TOPO_PLANET
4.5 VIRTUAL_STAR
4.6 LOCAL_STAR
4.7 VIRTUAL_PLANET
4.8 LOCAL_PLANET
4.9 ASTRO_STAR
4.10 ASTRO_PLANET
4.11 EQU2HOR
4.12 TRANSFORM_HIP
4.13 TRANSFORM_CAT
4.14 SIDEREAL_TIME
4.15 PRECESSION
4.16 EARTHTILT
4.17 CEL_POLE
4.18 EPHEMERIS

4.18.1 SOLARSYSTEM
4.18.1.1 SOLARSYSTEM, Version 2
4.18.1.2 SOLARSYSTEM, Version 3

5.0 Changes in NOVAS-C 2.0 From Version 1.0

6.0 Acknowledgements

7.0 Notes, References, and URLs

3

NOVAS-C
Naval Observatory Vector Astrometry Subroutines

C Language Version 2.0

John A. Bangert
Astronomical Applications Department

U. S. Naval Observatory

Based on the algorithms and Fortran code by:
George H. Kaplan

Astronomical Applications Department
U. S. Naval Observatory

1.0 Introduction

The Naval Observatory Vector Astrometry Subroutines, NOVAS, is an integrated
package of source-code modules for computing a wide variety of common astrometric
quantities and transformations. The package can provide, in one function call, the
instantaneous coordinates (apparent, topocentric, or astrometric place) of any star or
planet. At a lower level, NOVAS also provides general astrometric utility
transformations, such as those for precession, nutation, aberration, parallax, and the
gravitational deflection of light. The computations are highly precise. The NOVAS
algorithms are, in fact, virtually identical to those now used in the production of The
Astronomical Almanac. NOVAS is easy-to-use and can be incorporated into data
reduction programs, telescope control systems, and simulations.

The first version of NOVAS was released in 1988 as a package of Fortran subroutines
[1]. The Fortran package proved to be very popular, but there were requests for a C-
language version of the software. In the early 1990s, members of the U.S. Naval
Observatory (USNO)/Naval Research Laboratory Optical Interferometer group converted
parts of NOVAS to C for use in their project. Their work was returned to USNO’s
Astronomical Applications Department for further development. This work lead to the
first complete edition of NOVAS in ANSI-standard C (designated NOVAS-C Version
1.0), released in 1996. A major revision of the NOVAS Fortran code took place in 1998,
with the primary goal of supporting data conforming to the International Celestial
Reference System (ICRS) [2]. Shortly thereafter, NOVAS-C was updated to reflect the
changes in the Fortran code and to add additional capabilities. The result was NOVAS-C
Version 2.0, described in this document.

NOVAS-C uses, as input, astrometric reference data that is expressed in the
International Astronomical Union (IAU) J2000.0 system. In particular, NOVAS-C 2.0
supports (but is not limited to) data that conforms to the ICRS. ICRS-compatible data
includes the Hipparcos and Tycho Catalogues [3], the ACT Reference Catalog [4], the
International Celestial Reference Frame (ICRF) [5], the Jet Propulsion Laboratory’s

http://aa.usno.navy.mil/AA/
http://www.usno.navy.mil/
http://aa.usno.navy.mil/AA/faq/docs/ICRS_doc.html
http://www.iau.org/
http://astro.estec.esa.nl/Hipparcos/catalog.html
http://aries.usno.navy.mil/ad/act/act.html
http://maia.usno.navy.mil/ICRF/
http://aa.usno.navy.mil/AA/publications/docs/almanacs.html#astalm

4

DE405 planetary ephemeris [6], and Earth orientation measurements from the
International Earth Rotation Service (IERS) [7]. The list of ICRS-compatible data of
various types is continually expanding. NOVAS-C can also be used with data
conforming to the FK5 system.

In addition to support for data conforming to the ICRS, NOVAS-C 2.0 also provides
direct support for USNO/AE98—USNO’s new fundamental ephemerides of selected
minor planets[8]. Furthermore, NOVAS-C can be easily modified to use other
ephemerides as well.

The algorithms used by the NOVAS-C functions are based on a vector and matrix
formulation that is rigorous, consistent with recent IAU resolutions, and does not use
spherical trigonometry or form “day numbers” at any point. Objects within and outside
the solar system are treated similarly and the position vectors formed and operated on by
these functions place each relevant object at its actual distance (in AU) from the solar
system barycenter. Objects at unknown distance (parallax zero or undetermined) are
placed on the “celestial sphere” herein defined to be at a radius of 10 megaparsecs (2.06
× 1012 AU). A description of the algorithms used in NOVAS-C, along with definitions of
terms and related information, can be found in [9]. A few very minor revisions to the
algorithms were made in 1998 for compliance with the ICRS system. See also [10] for
an evaluation of the precision of the NOVAS algorithms that involve relativity.

NOVAS-C contains three levels of functions: basic, utility, and supervisory. Basic-
level functions supply the values of fundamental variables, such as the nutation angles
and the heliocentric positions of solar system bodies, for specific epochs. Utility-level
functions perform transformations corresponding to precession, nutation, aberration, etc.
Supervisory-level functions call the basic and utility functions in the proper order to
compute apparent, topocentric, or astrometric places of stars or solar system bodies for
specific dates and times. If desired, the user can interact exclusively with the
supervisory-level functions and not become concerned with the details of the geometry or
physical models involved in the computation.

The NOVAS-C source code contains sufficient internal documentation to make the
usage clear. Expanded explanations of some of the most frequently called functions are
given later in this document. In the Fortran version of NOVAS, some of the basic- and
utility-level subroutines are provided in several versions to accommodate users with a
need for alternative algorithms. The C version differs from the Fortran version in this
regard: only the “standard” version of each algorithm is provided.

The next section of this document (Section 2) provides an overview of the files that
constitute NOVAS-C. Section 2 also provides simple instructions for installing and
checking the software. Section 3 provides a list and brief description of each NOVAS-C
function. Section 4 gives detailed descriptions of some of the most frequently called
functions. Finally, Section 5 contains a list of the changes made to update NOVAS-C
from version 1.0 to version 2.0.

http://ssd.jpl.nasa.gov/iau-comm4/de405iom/
http://hpiers.obspm.fr/
http://aa.usno.navy.mil/hilton/ephemerides/asteroid_ephemerides.html

5

Throughout this document, bold text will be used to refer to file names and italic text
will be used to refer to function or subroutine names. Variable names or code snippets
will be presented in a typewriter-like font.

The USNO’s Astronomical Application Department maintains a set of NOVAS pages
in the Software section of the Department’s World Wide Web site. The Astronomical
Applications Department’s home page is located at http://aa.usno.navy.mil/AA.

Important Note

Many changes have been made to NOVAS-C in version 2.0. This includes important
changes to the argument lists of many functions, including the supervisory functions.
Users familiar with NOVAS-C 1.0 should consult Section 5 for a summary of the
changes.

6

2.0 Getting Started With NOVAS-C

2.1 File Overview

The following files make up the NOVAS-C system:

File name Description
novas.c contains all supervisory and utility functions and most basic

functions
novas.h header file for novas.c (includes structure definitions and

function prototypes)
novascon.c contains most mathematical and physical constants used by the

NOVAS-C system
novascon.h header file for novascon.c
solsys2.c version of function solarsystem that serves as an interface

between NOVAS-C and the JPL lunar and planetary
ephemerides (see detailed discussion in Section 4)

solsys3.c version of function solarsystem that provides the position and
velocity of the Earth or Sun without reference to an external data
file (see detailed discussion in Section 4)

solarsystem.h header file for the “solsys.c” files
readeph0.c file containing a dummy version of function readeph, the highest

level call to the USNO minor planet ephemerides software. This
file is replaced by readeph.c (not supplied with NOVAS-C)
when positions of selected minor planet are desired.

jplint.f Fortran subroutine that serves as the interface between NOVAS-
C and JPL’s (Fortran) ephemeris access code. For use with the
software in solsys2.c.

In addition, the following files are provided to assist in validating the installation of
NOVAS-C on your local system:

checkout-st.c main function that calls functions in novas.c and solsys3.c for
the purpose of validating a basic local installation

checkout-st.no output from the “checkout” application computed at USNO;
compare this file with results obtained from your local
installation

checkout-mp.c main function that calls functions in novas.c, solsys3.c, and the
USNO minor planet software for the purpose of validating a
local installation of NOVAS-C for use with the minor planet
ephemerides

checkout-mp.no output from the minor planet “checkout” application computed
at USNO; compare this file with results obtained from your local
installation

7

2.2 Installation

To install NOVAS-C on your local system, follow the simple instructions given
below. These instructions assume that you know how to compile and link C source code
on your computer system. Details of the process are dependent on your particular
computer system. NOVAS-C has been successfully implemented on PCs running
Microsoft Windows, Apple Macintosh systems, and several systems running different
flavors of Unix.

1. Copy all NOVAS-C files to a directory on your local system.
2. Compile and link files checkout-st.c, novas.c, novascon.c, solsys3.c, and

readeph0.c. Name the resulting application “checkout”.
3. Run the checkout application. Compare the results that you get from “checkout”

with the data in file checkout-st.no. If the results agree, the installation has
probably been successful, but see the important note below.

4. If you plan to use the USNO minor planet ephemerides with NOVAS-C, another
checkout program, checkout-mp.c, has been supplied. To check the installation of
NOVAS-C with the minor planet ephemerides software, repeat step 2, replacing
readeph0.c provided with NOVAS-C, with readeph.c, allocate.c, and chby.c
from the minor planet ephemeris software. Run the resulting application, and
compare your results with the contents of checkout-mp.no. The ephemeris file for
minor planet 2 Pallas (not supplied with NOVAS-C) is required to run this test.

Note that the checkout programs also provide examples of how the NOVAS-C
functions are called from an application program.

Important Note
The checkout applications exercise one supervisory function and most, but not all, of the
low-level functions in novas.c. Also, the checkout applications do not use solsys2.c;
hence, planetary positions (other than those of the Earth) are not tested. Thus, use of the
checkout applications is not a complete test of NOVAS-C. Comparing the results from
the NOVAS-C supervisory functions with results from the analogous NOVAS Fortran
supervisory functions will constitute a more complete check of your NOVAS-C
implementation.

8

3.0 Function Overview

3.1 Function List

The following functions are contained in file novas.c:

Entry name Level Purpose
app_star supervisory Computes the geocentric apparent place of a star, given its J2000.0

catalog mean place.
topo_star supervisory Computes the topocentric apparent place of a star, given its J2000.0

catalog mean place and geographic location of observer.
app_planet supervisory Computes the geocentric apparent place of a planet or other solar

system body.
topo_planet supervisory Computes the topocentric apparent place of a planet or other solar

system body, given the geographic location of observer.
virtual_star supervisory Computes the “virtual place” of a star, given its J2000.0 catalog

mean place.
local_star supervisory Computes the “local place” of a star, given its J2000.0 catalog mean

place and geographic location of observer.
virtual_planet supervisory Computes the “virtual place” of a planet or other solar system body.
local_planet supervisory Computes the “local place” of a planet or other solar system body,

given the geographic location of observer.
astro_star supervisory Computes the astrometric place of a star, given its J2000.0 catalog

mean place.
astro_planet supervisory Computes the astrometric place of a planet or other solar system

body.
mean_star supervisory Computes the J2000.0 mean place of a star, given its apparent place.
sidereal_time supervisory Computes Greenwich sidereal time, either mean or apparent.
pnsw supervisory Transforms arbitrary vector in rotating Earth-fixed (geographic)

system to space-fixed (J2000.0) system.
transform_hip supervisory Transforms Hipparcos data at epoch J1991.25 to epoch J2000.0 and

FK5-style units. To be used only for Hipparcos or Tycho stars with
linear space motion.

transform_cat supervisory Transforms a star’s catalog quantities for a change of epoch and/or
equator and equinox.

equ2hor supervisory Transforms apparent equatorial coordinates (right ascension and
declination) to horizon coordinates (zenith distance and azimuth).
Properly accounts for polar motion.

get_earth utility Provides barycentric and heliocentric position and velocity of the
Earth at a given time.

spin utility Rotates vector by angle equal to sidereal time.
wobble utility Adjusts Earth-fixed vector for polar motion.
proper_motion utility Updates the position vector of a star to allow for its space motion.
bary_to_geo utility Changes origin of coordinates from barycenter of solar system to

center of mass of Earth.
aberration utility Adjusts position vector for aberration of light due to motion of Earth.
precession utility Applies precession to position vector.
nutate utility Applies nutation to position vector.
sun_field utility Adjusts position vector for deflection of light by Sun’s gravitational

field.
terra utility Converts geographic coordinates to geocentric position vector.
vector2radec utility Converts position vector to RA and declination.
angle2vector utility Converts RA, declination, and distance to a position vector.

9

starvectors utility Converts RA, declination, proper motion, etc., to position and
velocity vectors.

nutation_angles basic Evaluates nutation series.
fund_args basic Computes fundamental arguments (mean elements) of the Sun and

Moon.
earthtilt basic Provides information on orientation of Earth’s axis: obliquity,

nutation parameters, etc.
cel_pole basic Allows for the specification of celestial pole offsets for high-

precision applications.
set_body basic Creates a structure of type body defining a solar system object

based on input parameters.
ephemeris basic Retrieves the position and velocity of a body from a fundamental

ephemeris.
make_cat_entry basic Creates a structure of type cat_entry containing catalog data for

a star or “star-like” object.
refract basic Computes approximate refraction in zenith distance for optical

wavelengths.
tdb2tdt basic Converts Terrestrial Time (TT or TDT) to Barycentric Dynamical

Time (TDB).

julian_date basic Computes the Julian date for a given calendar date (year, month,
day, hour).

cal_date basic Computes a date on the Gregorian calendar given the Julian date.

3.2 Ephemeris Functions

NOVAS-C must have access to a solar system ephemeris. The solar system
ephemeris provides NOVAS-C with the heliocentric and barycentric positions and
velocities of desired solar system objects referred to the mean equator and equinox of
J2000.0. The solar system ephemeris is required even when only precise star positions
are needed – in that case, the “desired solar system object” is the Earth. Thus, an
ephemeris of the Earth is the minimum requirement.

NOVAS-C accesses ephemerides of solar system objects through function ephemeris.
This function, as supplied in NOVAS-C 2.0, supports access to an ephemeris of the major
solar system bodies (Sun, Moon, and the nine planets), and provides direct support for
access to the USNO minor planet ephemerides (USNO/AE98). In order to access the
ephemeris of major solar system bodies, function ephemeris calls function solarsystem.
While solarsystem has a defined argument list, its inner workings can take any form
depending upon the ephemeris that has been selected for use. Users may write their own
versions of solarsystem, or use either of the two versions provided with NOVAS-C.

See Section 4.18 for detailed information on the ephemeris functions.

3.2.1 Major Planets, Sun, and Moon

Files jplint.f and solsys2.c contain the software that serves as the interface between
NOVAS-C and the JPL lunar and planetary ephemerides, such as DE200, DE405, or
DE406. Subroutine jplint contains a single call to JPL’s Fortran subroutine pleph, which

10

in turn calls other Fortran subroutines in the JPL ephemeris software package. The user
must obtain the Fortran ephemeris package, set up the binary, random-access ephemeris
file, and link the applicable JPL Fortran code with NOVAS-C. For details, see the
discussion of function solarsystem version 2 in Section 4.18.1.1.

File solsys3.c contains the software (function solarsystem, version 3) that provides
the position and velocity of the Earth or Sun without reference to an external data file.
This version of solarsystem is ideally suited for computing coordinates of stars, with
errors not exceeding several milliarcseconds. For details, see the discussion of function
solarsystem version 3 in Section 4.18.1.2.

3.2.2 Minor Planets

In order to access the USNO minor planet ephemerides (USNO/AE98), function
ephemeris calls function readeph. Function readeph is part of the USNO/AE98 minor
planet ephemeris package and is not part of, or supplied with, NOVAS-C. A dummy
version of readeph is provided in file readeph0.c. The dummy function enables
NOVAS-C to be used without the USNO minor planet ephemeris package (i.e. for
computing positions of major solar system bodies and “stars” only). To use USNO/AE98
with NOVAS-C, replace file readeph0.c provided with NOVAS-C, with readeph.c,
allocate.c, and chby.c from the USNO minor planet ephemerides software, when
compiling and linking. Minor planet ephemeris files must be created using the utilities
provided in the USNO/AE98 package. An ephemeris of major solar system bodies,
accessed by function solarsystem, is required as well.

3.2.3 Other Bodies and Ephemerides

Users can easily add access to other ephemerides by modifying function ephemeris.
The code and comments in this function should make the modification self-explanatory.

3.3 Important Data Structures

There are three important data structures used throughout NOVAS-C. They are
formally declared in file novas.h.

3.3.1 Structure body

Structure body designates a celestial object.

typedef struct
{
 short int type;
 short int number;
 char name[100];
} body;

11

where:

type = type of body
= 0 ... major planet, Sun, or Moon
= 1 ... minor planet

number = body number
For 'type' = 0: Mercury = 1, ..., Pluto = 9, Sun = 10, Moon = 11
For 'type' = 1: minor planet number

name = name of the body (limited to 99 characters)

3.3.2 Structure site_info

Structure site_info contains data for the observer’s location. The atmospheric
parameters are used only by the refraction function (refract) called from function
equ2hor. Parameters can be added to this structure if a more sophisticated refraction
model is substituted.

typedef struct
{
 double latitude;

 double longitude;
 double height;

 double temperature;
 double pressure;
} site_info;

where:

latitude = geodetic latitude in degrees; north positive.
longitude = geodetic longitude in degrees; east positive.
height = height of the observer (meters).
temperature = temperature (Celsius).
pressure = atmospheric pressure (millibars)

3.3.3 Structure cat_entry

Structure cat_entry contains the astrometric catalog data for a star; equator and
equinox and units will depend on the catalog. While this structure can be used as a
generic container for catalog data, all high-level NOVAS-C functions require J2000.0
catalog data with FK5-type units (shown in square brackets below).

typedef struct
{
 char catalog[4];
 char starname[51];
 long int starnumber;
 double ra;
 double dec;
 double promora;
 double promodec;
 double parallax;
 double radialvelocity;
} cat_entry;

12

where:

catalog[4] = 3-character catalog designator (e.g. FK5, HIP, etc.)
starname[51] = name of star.
starnumber = integer identifier assigned to star.
ra = mean right ascension [hours].
dec = mean declination [degrees].
promora = proper motion in RA [seconds of time per century].
promodec = proper motion in declination [arcseconds per century].
parallax = parallax [arcseconds].
radialvelocity = radial velocity [kilometers per second].

13

4.0 Important Functions in NOVAS-C

4.1 APP_STAR

short int app_star (double tjd, body *earth, cat_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the apparent place of a star at date 'tjd', given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for apparent place.
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 *star (struct cat_entry)
 Pointer to catalog entry structure containing J2000.0 catalog
 data with FK5-style units (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date 'tjd'.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the apparent place of a star. The word “star” as used here
refers to any object outside the solar system. If the values of promora, promodec,
parlax, or radvel within structure star are unknown (or zero within the errors of
measurement), the calling program should set them to zero. For extragalactic objects,
these input values should be set to zero. The user’s choice of the version of function
solarsystem determines the value of the argument earth that the calling program must
supply to app_star.

“Loose” catalog data can be assembled into a structure of type cat_entry by using
function make_cat_entry.

14

4.2 TOPO_STAR

short int topo_star (double tjd, body *earth, double deltat,
 cat_entry *star, site_info *location,

 double *ra, double *dec)

 PURPOSE:
 Computes the topocentric place of a star at date 'tjd', given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0 and the location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for topocentric place.
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 deltat (double)
 Difference TT (or TDT)-UT1 at 'tjd', in seconds.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing J2000.0 catalog
 data with FK5-style units (defined in novas.h).
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date 'tjd'.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

This function computes the topocentric place of a star (neglecting atmospheric
refraction) for the location specified by the argument location, for the time specified by
the argument tjd. Note that tjd is the TT time at which the topocentric place is to be
computed. The word “star” as used here refers to any object outside the solar system. If
the values of promora, promodec, parlax, or radvel within structure
star are unknown (or zero within the errors of measurement), the calling program
should set them to zero. For extragalactic objects, these input values should be set to
zero. The difference TT–UT1 (often called ∆T) is passed to the function via argument
deltat. Values of ∆T are published in the annual Astronomical Almanac [11] or can be
obtained from the National Earth Orientation Service (NEOS) home page on the World

http://maia.usno.navy.mil/

15

Wide Web [12]. The user’s choice of the version of function solarsystem determines the
value of the argument earth that the calling program must supply to topo_star.

“Loose” catalog data can be assembled into a structure of type cat_entry by
using function make_cat_entry.

16

4.3 APP_PLANET

short int app_planet (double tjd, body *ss_object, body *earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Compute the apparent place of a planet or other solar system body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for apparent place.
 *ss_object (struct body)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Apparent right ascension in hours, referred to true equator
 and equinox of date 'tjd'.
 *dec (double)
 Apparent declination in degrees, referred to true equator
 and equinox of date 'tjd'.
 *dis (double)
 True distance from Earth to planet at 'tjd' in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'ephemeris'.

Discussion:

This function computes the apparent place of a planet or other solar system body by
calling function ephemeris to obtain its rectangular coordinates, along with those of the
Earth. Other utility- and basic- level functions are also called. The user’s choice of
ephemerides determines the values to be used in structures ss_object and earth,
which identify the solar system object and the Earth, respectively.

17

4.4 TOPO_PLANET

short int topo_planet (double tjd, body *ss_object, body *earth,
 double deltat, site_info *location,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the topocentric place of a planet, given the location of
 the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for topocentric place.
 *ss_object (struct body)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 deltat (double)
 Difference TT(or TDT)-UT1 at ‘tjd’, in seconds.
 *location (struct site_info)
 Pointer to structure containing observer’s location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Topocentric right ascension in hours, referred to true
 equator and equinox of date ‘tjd’.
 *dec (double)
 Topocentric declination in degrees, referred to true equator
 and equinox of date ‘tjd’.
 *dis (double)
 True distance from observer to planet at ‘tjd’ in AU.

 RETURNED
 VALUE:
 (short int)
 0…Everything OK.
 >0…Error code from function ‘ephemeris’.

Discussion:

This function computes the topocentric place of a planet or other solar system body
(neglecting atmospheric refraction) for the location specified by the argument location,
for the time specified by the argument tjd. Note that tjd is the TT time at which the
topocentric place is to be computed. The difference TT–UT1 (often called ∆T) is passed
to the function via argument deltat. Values of ∆T are published in the annual
Astronomical Almanac or can be obtained from the National Earth Orientation Service
(NEOS) home page on the World Wide Web. The user’s choice of ephemerides
determines the values to be used in structures ss_object and earth, which identify
the solar system object and the Earth, respectively.

http://maia.usno.navy.mil/

18

4.5 VIRTUAL_STAR

short int virtual_star (double tjd, body *earth, cat_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the virtual place of a star at date ‘tjd’, given its
 mean place, proper motion, parallax, and radial velocity for
 J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for virtual place.
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 *star (struct cat_entry)
 Pointer to catalog entry structure containing J2000.0 catalog
 data with FK5-style units (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Virtual declination in degrees, referred to mean equator
 and equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0…Everything OK.
 >0…Error code from function ‘solarsystem’.

Discussion:

See the discussion for function app_star. Function virtual_star is identical to
app_star in input arguments and use. Here, however, the output arguments provide the
virtual place of the star. The virtual place is essentially the apparent place expressed in
the coordinate system of standard epoch J2000.0.

19

4.6 LOCAL_STAR

short int local_star (double tjd, body *earth, double deltat,
 cat_entry *star, site_info *location,

 double *ra, double *dec)

 PURPOSE:
 Computes the local place of a star, given its mean place, proper
 motion, parallax, and radial velocity for J2000.0, and the
 location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for local place.
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 deltat (double)
 Difference TT(or TDT)-UT1 at 'tjd', in seconds.
 *star (struct cat_entry)
 Pointer to catalog entry structure containing J2000.0 catalog
 data with FK5-style units (defined in novas.h).
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to mean equator and
 equinox of J2000.
 *dec (double)
 Local declination in degrees, referred to mean equator and
 equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function topo_star. Function local_star is identical to
topo_star in input arguments and use. The local place is essentially the topocentric place
expressed in the coordinate system of standard epoch J2000.0.

20

4.7 VIRTUAL_PLANET

short int virtual_planet (double tjd, body *ss_object, body *earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the virtual place of a planet or other solar system body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for virtual place.
 *ss_object (struct body)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Virtual right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Virtual declination in degrees, referred to mean equator
 and equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0…Everything OK.
 >0…Error code from function ‘ephemeris’.

Discussion:

See the discussion for function app_planet. Function virtual_planet is identical to
app_planet in input arguments and use. Here, however, the output arguments provide the
virtual place of the planet. The virtual place is essentially the apparent place expressed in
the coordinate system of standard epoch J2000.0.

21

4.8 LOCAL_PLANET

short int local_planet (double tjd, body *ss_object, body *earth,
 double deltat, site_info *location,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the local place of a planet or other solar system body,
 given the location of the observer.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for local place.
 *ss_object (struct body)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 deltat (double)
 Difference TT(or TDT)-UT1 at 'tjd', in seconds.
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Local right ascension in hours, referred to mean equator and
 equinox of J2000.
 *dec (double)
 Local declination in degrees, referred to mean equator and
 equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function topo_planet. Function local_planet is identical to
topo_planet in input arguments and use. The local place is essentially the topocentric
place expressed in the coordinate system of standard epoch J2000.0.

22

4.9 ASTRO_STAR

short int astro_star (double tjd, body *earth, cat_entry *star,

 double *ra, double *dec)

 PURPOSE:
 Computes the astrometric place of a star, given its mean place,
 proper motion, parallax, and radial velocity for J2000.0.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for astrometric place.
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).
 *star (struct cat_entry)
 Pointer to catalog entry structure containing J2000.0 catalog
 data with FK5-style units (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Astrometric declination in degrees, referred to mean equator
 and equinox of J2000.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_star. Function astro_star is identical to app_star
in input arguments and use. Here, however, the output arguments provide the astrometric
place of the star.

23

4.10 ASTRO_PLANET

short int astro_planet (double tjd, body *ss_object, body *earth,

 double *ra, double *dec, double *dis)

 PURPOSE:
 Computes the astrometric place of a planet or other solar system
 body.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date for calculation.
 *ss_object (struct body)
 Pointer to structure containing the body designation for the
 solar system body (defined in novas.h).
 *earth (struct body)
 Pointer to structure containing the body designation for the
 Earth (defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *ra (double)
 Astrometric right ascension in hours, referred to mean equator
 and equinox of J2000.
 *dec (double)
 Astrometric declination in degrees, referred to mean equator
 and equinox of J2000.
 *dis (double)
 True distance from Earth to planet in AU.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 >0...Error code from function 'solarsystem'.

Discussion:

See the discussion for function app_planet. Function astro_planet is identical to
app_planet in input arguments and use. Here, however, the output arguments provide the
astrometric place of the planet.

24

4.11 EQU2HOR

void equ2hor (double tjd, double deltat, double x, double y,
 site_info *location, double ra, double dec,
 short int ref_option,

 double *zd, double *az, double *rar, double *decr)

 PURPOSE:
 This function transforms apparent equatorial coordinates (right
 ascension and declination) to horizon coordinates (zenith
 distance and azimuth). It uses a method that properly accounts
 for polar motion, which is significant at the sub-arcsecond
 level. This function can also adjust coordinates for atmospheric
 refraction.

 INPUT
 ARGUMENTS:
 tjd (double)
 TT (or TDT) Julian date.
 deltat (double)
 Difference TT (or TDT)-UT1 at 'tjd', in seconds.
 x (double)
 Conventionally-defined x coordinate of celestial ephemeris
 pole with respect to IERS reference pole, in arcseconds.
 y (double)
 Conventionally-defined y coordinate of celestial ephemeris
 pole with respect to IERS reference pole, in arcseconds.
 *location (struct site_info)
 Pointer to structure containing observer's location (defined
 in novas.h).
 ra (double)
 Topocentric right ascension of object of interest, in hours,
 referred to true equator and equinox of date.
 dec (double)
 Topocentric declination of object of interest, in degrees,
 referred to true equator and equinox of date.
 ref_option (short int)
 = 0 ... no refraction
 = 1 ... include refraction, using 'standard' atmospheric
 conditions.
 = 2 ... include refraction, using atmospheric parameters
 input in the 'location' structure.

 OUTPUT
 ARGUMENTS:
 *zd (double)
 Topocentric zenith distance in degrees, affected by
 refraction if 'ref_option' is non-zero.
 *az (double)
 Topocentric azimuth (measured east from north) in degrees.
 *rar (double)
 Topocentric right ascension of object of interest, in hours,
 referred to true equator and equinox of date, affected by
 refraction if 'ref_option' is non-zero.
 *decr (double)
 Topocentric declination of object of interest, in degrees,
 referred to true equator and equinox of date, affected by
 refraction if 'ref_option' is non-zero.

 RETURNED
 VALUE:
 None.

25

Discussion:

This function takes the topocentric celestial coordinates of an object and computes the
equivalent local horizon coordinates. The function uses a method that properly accounts
for polar motion, which is significant at the sub-arcsecond level. Atmospheric refraction
can be included in the transformation, and if so, refraction is applied to both sets of
coordinates (this can be useful for telescope pointing). Refraction, when requested, is
computed by function refract.

ra and dec, the input topocentric right ascension and declination, can be obtained
from topo_star or topo_planet. tjd is the TT time at which the topocentric place was
computed. The difference TT–UT1 (often called ∆T) is passed to the function via
argument deltat. Values of ∆T are published in the annual Astronomical Almanac or
can be obtained from the National Earth Orientation Service (NEOS) home page on the
World Wide Web. The coordinates of the pole, x and y, can be obtained from IERS
Bulletins A and B, although x and y can be set to zero (0.0) if sub-arcsecond accuracy is
not needed. (If refraction is requested, sub-arcsecond accuracy is unlikely.)

The height of the observer and meteorological conditions at the observer, contained in
structure location, are used only for refraction, if ref_option is not equal to zero.
In this function, the directions zd = 0.0 (the zenith) and az = 0.0 (north) are considered
fixed in the terrestrial frame. Specifically, the zenith is along the geodetic normal, and
north is toward the IERS reference pole.

If ref_option = 0 (no refraction), then rar = ra and decr = dec.

http://maia.usno.navy.mil/

26

4.12 TRANSFORM_HIP

void transform_hip (cat_entry *hipparcos,

 cat_entry *fk5)

 PURPOSE:
 To convert Hipparcos data at epoch J1991.25 to epoch J2000.0 and
 FK5-style units. To be used only for Hipparcos or Tycho stars
 with linear space motion.

 INPUT
 ARGUMENTS:
 *hipparcos (struct cat_entry)
 An entry from the Hipparcos catalog, at epoch J1991.25, with
 all members having Hipparcos catalog units. See Note 1
 below (struct defined in novas.h).

 OUTPUT
 ARGUMENTS:
 *fk5 (struct cat_entry)
 The transformed input entry, at epoch J2000.0, with all
 members having FK5 catalog units. See Note 2 below (struct
 defined in novas.h).

 RETURNED
 VALUE:
 None.

Discussion:

This function takes Hipparcos catalog data, which is given for epoch J1991.25, and
transforms it to epoch J2000.0 for use in NOVAS-C functions such as app_star. The
appropriate units conversion is also performed. Function transform_cat is called to
perform the epoch transformation.

This subroutine should be used only for Hipparcos or Tycho stars with linear space
motion.

Note that radial velocity is not given in the Hipparcos catalog. If a value is not
known, set it to zero in the input hipparcos structure.

27

4.13 TRANSFORM_CAT

void transform_cat (short int option, double date_incat,
 cat_entry *incat, double date_newcat,
 char newcat_id[4],

 cat_entry *newcat)

 PURPOSE:
 To transform a star’s catalog quantities for a change of epoch
 and/or equator and equinox.

 INPUT
 ARGUMENTS:
 option (short int)
 Transformation option
 = 1 … change epoch; same equator and equinox
 = 2 … change equator and equinox; same epoch
 = 3 … change equator and equinox and epoch
 date_incat (double)
 TT Julian date, or year, of input catalog data.
 *incat (struct cat_entry)
 An entry from the input catalog (struct defined in novas.h).
 date_newcat (double)
 TT Julian date, or year, of transformed catalog data.
 Newcat_id[4] (char)
 Three-character abbreviated name of the transformed catalog.

 OUTPUT
 ARGUMENTS:
 newcat (struct cat_entry)
 The transformed catalog entry (struct defined in novas.h).

 RETURNED
 VALUE:
 None.

Discussion:

Function transform_cat performs mean place to mean place transformations on
star catalog data. Only reference data, not observables, are involved. Two dates must be
specified: the input data is associated with the first date, and the output data is associated
with the second date. Two basic transformations are available:

1. The star’s data is updated to account for the star’s space motion between
the first and second dates, within a fixed reference frame. That is, the epoch
of the data is changed, but not the equator and equinox.

2. The reference frame within which the star’s coordinates and proper motion
are expressed is rotated corresponding to precession between the first and
second dates. The star’s position in space is not changed. That is, the equator
and equinox of the data are changed, but not the epoch.

28

These two transformations correspond to option = 1 and option = 2, respectively.
Option = 3 requests both transformations, and is the most common case.

This function should be used only for stars with linear space motion; do not use for
components of orbit binaries. Also, this function cannot be properly used to bring data
from old (pre-FK5) star catalogs into the modern system, because old catalogs were
compiled using a set of constants that are incompatible with the IAU (1976) system.

29

4.14 SIDEREAL_TIME

void sidereal_time (double jd_high, double jd_low, double ee,

 double *gst)

 PURPOSE:
 Computes the Greenwich apparent sidereal time, at Julian date
 ‘jd_high’ + ‘jd_low’.

 INPUT
 ARGUMENTS:
 jd_high (double)
 Julian date, integral part.
 Jd_low (double)
 Julian date, fractional part.
 Ee (double)
 Equation of the equinoxes (seconds of time). [Note: this
 quantity is computed by function ‘earthtilt’.]

 OUTPUT
 ARGUMENTS:
 *gst (double)
 Greenwich apparent sidereal time, in hours.

 RETURNED
 VALUE:
 None.

Discussion:

This function computes Greenwich sidereal time. To obtain the Greenwich mean
sidereal time, set input argument ee = 0.0. To obtain Greenwich apparent sidereal time,
supply the correct value for the equation of the equinoxes (ee) which can be computed
by calling function earthtilt.

The input Julian date may be split into two parts to ensure maximum precision in the
computation. For maximum precision, jd_high should be set to be equal to the integral
part of the Julian date, and jd_low should be set to be equal to the fractional part. For
most applications the position of the split is not critical as long as the sum jd_high +
jd_low is correct: for example, when used with computers providing 16 decimal digits
of precision in double variables, this function will yield values of gst precise to better
than 1 millisecond even if jd_high contains the entire Julian date and jd_low is set to
0.0. For ICRS/IERS compatibility when computing apparent sidereal time at millisecond
precision or better, you should also use function cel_pole and supply the published
celestial pole offsets.

For most uses, the input Julian date should be in the UT1 time scale. If the input
Julian date is in the TDB time scale, the output must be considered to be ‘dynamical’
sidereal time.

30

4.15 PRECESSION

void precession (double tjd1, double *pos, double tjd2,

 double *pos2)

 PURPOSE:
 Precesses equatorial rectangular coordinates from one epoch to
 another. The coordinates are referred to the mean equator and
 equinox of the two respective epochs.

 INPUT
 ARGUMENTS:
 tjd1 (double)
 TDB Julian date of first epoch.
 pos[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean equator and equinox of first epoch.
 tjd2 (double)
 TDB Julian date of second epoch.

 OUTPUT
 ARGUMENTS:
 pos2[3] (double)
 Position vector, geocentric equatorial rectangular coordinates,
 referred to mean equator and equinox of second epoch.

 RETURNED
 VALUE:
 None.

Discussion:

This function precesses a position vector pos1 from the equatorial rectangular
system of epoch tjd1 to the equatorial rectangular system of epoch tjd2; the resulting
vector is pos2. The two epochs are completely arbitrary and the transformation is
reversible. In typical usage, one of the two epochs will be standard epoch J2000.0, that
is, either tjd1 or tjd2 will be 2451545.0.

31

4.16 EARTHTILT

void earthtilt (double tjd,

 double *mobl, double *tobl, double *eq, double *dpsi,
 double *deps)

 PURPOSE:
 Computes quantities related to the orientation of the Earth's
 rotation axis at Julian date 'tjd'.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date of the desired time

 OUTPUT
 ARGUMENTS:
 *mobl (double)
 Mean obliquity of the ecliptic in degrees at 'tjd'.
 *tobl (double)
 True obliquity of the ecliptic in degrees at 'tjd'.
 *eq (double)
 Equation of the equinoxes in seconds of time at 'tjd'.
 *dpsi (double)
 Nutation in longitude in arcseconds at 'tjd'.
 *deps (double)
 Nutation in obliquity in arcseconds at 'tjd'.

 RETURNED
 VALUE:
 None.

Discussion:

This function computes various quantities related to the orientation of the Earth’s
rotation axis in inertial space at a specific time. The computation involves a call to
function nutation_angles to evaluate the nutation series. The output values of the last
four arguments will correctly reflect the celestial pole offsets if function cel_pole has
previously been called. A call to cel_pole is required for ICRS compatibility.

32

4.17 CEL_POLE

void cel_pole (double del_dpsi, double del_deps)

 PURPOSE:
 This function allows for the specification of celestial pole
 offsets for high-precision applications. These are added
 to the nutation parameters delta psi and delta epsilon.

INPUT
 ARGUMENTS:
 del_dpsi (double)
 Value of offset in delta psi (dpsi) in arcseconds.
 del_deps (double)
 Value of offset in delta epsilon (deps) in arcseconds.

 OUTPUT
 ARGUMENTS:
 None.

 RETURNED
 VALUE:
 None.

Discussion:

This function allows for the specification of celestial pole offsets for high precision
(better than 0.1 arcsecond) applications. The offsets are subsequently applied as
corrections to the nutation in longitude and nutation in obliquity within earthtilt. Thus,
earthtilt’s output arguments tobl, eq, dpsi, and deps will be affected. Since other
NOVAS subroutines require earthtilt to obtain data related to the Earth’s orientation in
space, the celestial pole offsets specified here are propagated through the data that the
various NOVAS-C functions provide.

Daily values of the celestial pole offsets are published, for example, in IERS Bulletins
A and B. The celestial pole offsets effectively correct for errors or incompleteness in the
standard precession or nutation models, and are needed for conformity with the ICRS
system. If you use cel_pole, make sure it is called before any other functions for a given
date. Values of the pole offsets that you specify by a call to cel_pole will be used by
earthtilt until you explicitly change them.

http://hpiers.obspm.fr/

33

4.18 EPHEMERIS

short int ephemeris (double tjd, body *cel_obj, short int origin,

 double *pos, double *vel)

 PURPOSE:
 Retrieves the position and velocity of a body from a fundamental
 ephemeris.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date.
 *cel_obj (struct body)
 Pointer to structure containing the designation of the body
 of interest (defined in novas.h).
 origin (int)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1.

 OUTPUT
 ARGUMENTS:
 pos[3] (double)
 Position vector of 'body' at tjd; equatorial rectangular
 coordinates in AU referred to the mean equator and equinox
 of J2000.0.
 vel[3] (double)
 Velocity vector of 'body' at tjd; equatorial rectangular
 system referred to the mean equator and equinox of J2000.0,
 in AU/Day.

 RETURNED
 VALUE:
 (short int)
 0 ... Everything OK.
 1 ... Invalid value of 'origin'.
 2 ... Invalid value of 'type' in 'cel_obj'.
 3 ... Unable to allocate memory.
 10+n ... where n is the error code from 'solarsystem'.
 20+n ... where n is the error code from 'readeph'.

Discussion:

This function serves as the interface between NOVAS-C and ephemerides of solar
system bodies. The version of ephemeris that ships with NOVAS-C directly supports an
ephemeris of major solar system bodies (such as JPL’s DE200, DE405, or DE406), and
the USNO minor planet ephemerides (USNO/AE98). The ephemeris of the major bodies
is accessed via a call to function solarsystem from within function ephemeris. The minor
planet ephemerides are accessed via a call to readeph. (Note: both the USNO minor
planet ephemerides and the JPL ephemerides are not part of NOVAS-C and must be
obtained elsewhere).

It is relatively easy to modify function ephemeris to support ephemerides other than
the two mentioned above. In function ephemeris, there is a switch structure controlled

34

by the value of type in a data structure of type cel_obj. Currently, two cases within
the switch are defined : type = 0 (major bodies via solarsystem) and type = 1 (minor
planets via readeph). To support another ephemeris, the user simply defines a new value
of type and adds another case block containing code that accesses the new ephemeris.

Additional information concerning function solarsystem is provided in the following
sections. A brief description of the USNO minor planet ephemerides and their use in
NOVAS-C is given in Section 3.2.2.

35

4.18.1 SOLARSYSTEM

 short int solarsystem (double tjd, short int body, short int origin,

 double *pos, double *vel)

 PURPOSE:
 Provides the position and velocity vectors of a planet or other
 solar system body at a specific time. The origin of coordinates
 may be either the barycenter of the solar system or the center
 of mass of the Sun.

 INPUT
 ARGUMENTS:
 tjd (double)
 TDB Julian date.
 body (short int)
 Body identification number for the solar system object of
 interest; Mercury = 1,...,Pluto = 9, Sun = 10, Moon = 11.
 origin (short int)
 Origin code; solar system barycenter = 0,
 center of mass of the Sun = 1.

 OUTPUT
 ARGUMENTS:
 pos[3] (double)
 Position vector of 'body' at tjd; equatorial rectangular
 coordinates in AU referred to the mean equator and equinox
 of J2000.0.
 vel[3] (double)
 Velocity vector of 'body' at tjd; equatorial rectangular
 system referred to the mean equator and equinox of J2000.0,
 in AU/Day.

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 Other values depend upon version in use

Discussion:

Function solarsystem provides positions and velocities for the major bodies of the
solar system. Specifically, this function supplies values for the components of the
position vector pos and velocity vector vel for body body at time tjd. The vectors
computed by solarsystem are in the equatorial rectangular coordinate system which
is oriented to the mean equator and equinox of standard epoch J2000.0. The vectors are
barycentric if origin = 0 and heliocentric if origin = 1.

There are two different versions of solarsystem supplied in NOVAS-C, each with
its own internal logic. One uses internally-stored data or series expansions, the other uses

36

the JPL ephemerides, which exist as external data files. Additional documentation is
provided on the following pages for the proper use of each version. The user is free to
supply alternative versions, providing that the arguments conform to the above
specifications.

The values of the body identification number, body, will in general differ from one
solarsystem version to another; consult the documentation for the specific version in
use. Usually, body = 1 refers to Mercury, body = 2 refers to Venus, body = 3 refers
to the Earth, etc., but the identification numbers for bodies such as the Sun or Moon vary.
Furthermore, some versions of solarsystem support only a subset of the major solar
system bodies. The minimum requirement is support for the Earth. It is also sometimes
necessary to distinguish between the Earth and the Earth/Moon barycenter; for computing
quantities related to observables (e.g., apparent, topocentric, or astrometric places) it is
the position and velocity of the Earth that is required.

37

4.18.1.1 SOLARSYSTEM, Version 2

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Invalid value of body or origin.
 2...Error detected by JPL software.

Discussion:

This version serves as the interface between the Jet Propulsion Laboratory’s lunar and
planetary ephemeris software and NOVAS-C. The function contains a single call to
Fortran subroutine jplint, which in turn calls pleph and other Fortran subroutines in the
JPL ephemeris software package. The user is responsible for obtaining the Fortran
ephemeris code and data, setting up the binary, random-access ephemeris file, and linking
the JPL Fortran code with NOVAS-C. See the Implementation Notes below.

The body identification numbers to be used with this version are: Sun, body = 10;
Mercury, body = 1; Venus, body = 2; Earth, body = 3; Mars, body = 4; Jupiter,
body = 5; Saturn, body = 6; Uranus, body = 7; Neptune, body = 8; Pluto, body = 9;
Moon, body = 11.

Implementation Notes:

In order to use NOVAS-C with solarsystem version 2, you must first obtain the
export planetary ephemeris package from JPL. Be sure to choose an ephemeris whose
coordinates are oriented to the mean equator and equinox of standard epoch J2000.0,
such as DE200, DE405, or DE406. The export package is available over the Internet
from the anonymous ftp server navigator.jpl.nasa.gov/ephem/export and consists of
several large ASCII data files and software provided in the form of Fortran source code.
An installation guide is also included. Alternatively, the export package is also available
on CD-ROM from Willmann-Bell, Inc. (www.willbell.com) for a modest fee. The
installation process consists of converting (large) files of ASCII ephemeris data to binary,
direct-access form using a supplied utility program. Then, the binary file is verified using
another utility program and a file of comparison data. If the verification process is
successful, the ephemeris file is ready to use. The ephemeris data is obtained from the
binary file by calling the access subroutines provided in the export package.

Important Note
Over the years, there have been several versions of the JPL export ephemeris software.
The following discussion specifically refers to the software version available on the “JPL
Planetary and Lunar Ephemerides” CD-ROM ©1997.

Version 2 of solarsystem (C code) obtains ephemeris data from the binary file by
calling Fortran subroutine jplint, which is part of the NOVAS-C package. Subroutine

http://www.willbell.com/
ftp://navigator.jpl.nasa.gov/ephem/export/

38

jplint, in turn, calls JPL subroutine pleph (Fortran code). The C function solarsystem has
a few features that make it possible for it to exchange data with the Fortran subroutine
jplint. First, all of the C arguments of the call to jplint are addresses, since Fortran uses
call by address instead of call by value for arguments of subroutines. Second, all of the
integer arguments in the call are designated as type long int in the C function to
match the Fortran INTEGER default. The DOUBLE PRECISION arguments in the
subroutine are designated as type double in the C function.

Probably the biggest hurdle in implementing version 2 of solarsystem will involve the
proper compiling and linking of the mixed-language files. The procedures will be
specific to your computing platform; therefore, you will have to consult your compiler
manual for detailed instructions. The following instructions are offered only as a
guideline – they provide a specific example of how the mixed-language files were
successfully handled on an IBM RISC System 6000 Unix workstation.

1. Create a single file with all of the JPL Fortran ephemeris access subroutines.
Name it jplsubs.f.

2. Compile the Fortran files without invoking the linkage editor. This creates the
object file jplsubs.o and jplint.o. The Fortran compiler/linker is xlf.

xlf -c jplsubs.f jplint.f

3. Compile, again without invoking the linkage editor, the C files novas.c,
novascon.c, solsys2.c, and readeph0.c. This creates the object files novas.o,
novascon.o, solsys2.o, and readeph0.o:

xlc -c -lm novas.c novascon.c solsys2.c readeph0.c

The C compiler/linker is xlc. The -lm option specifically searches the math library.

4. Finally, compile the main function and link it with the object files:

In this example, the resulting executable file is named app. Note especially the use of the
-l option to force the C compiler/linker to search the Fortran libraries for unresolved
references.

create executable named "app"

search the C math library

search the Fortran
libraries (xlf90)

main function
object files

search in this directory
for -l libraries

xlc -L/usr/lib -lm -lxlf90 -o app main.c novas.o novascon.o solsys2.o readeph0.o jplsubs.o

39

Important Note
It is strongly recommended that results obtained from your specific implementation of
NOVAS-C and solarsystem version 2 be checked by comparing to corresponding values
published in the Astronomical Almanac, or by comparing to results obtained from the
Fortran version of NOVAS using subroutine SOLSYS version 2.

40

4.18.1.2 SOLARSYSTEM, Version 3

 RETURNED
 VALUE:
 (short int)
 0...Everything OK.
 1...Input Julian date ('tjd') out of range.
 2...Invalid value of 'body'.

Discussion:

This version of solarsystem provides the position and velocity of the Earth or Sun
without reference to any external data file. The heliocentric position and velocity of the
Earth are computed by evaluating trigonometric series. When barycentric positions and
velocities are required, a number of somewhat crude approximations are involved;
therefore, barycentric positions and velocities computed by this version of solarsystem
are less accurate than heliocentric positions and velocities. The resulting errors should be
less than the following values:

Maximum error in heliocentric positions: 6 × 10-6 AU
Maximum error in heliocentric velocities: 8 × 10-7 AU/day
Maximum error in barycentric positions: 7 × 10-4 AU
Maximum error in barycentric velocities: 2 × 10-6 AU/day

When this version of solarsystem is used in the computation of the apparent place of
the Sun, it should contribute less than 2 arcseconds error. When this version of
solarsystem is used in the computation of apparent places of stars, it should contribute
less than 2 milliarcseconds error. This error assessment applies to the interval
1800–2050.

Note: This version of solarsystem calls several other functions in the NOVAS-C
package.

The body identification numbers to be used with this version are: Sun, body = 0,
body = 1, or body = 10; Earth, body = 2 or body = 3.

41

5.0 Changes in NOVAS-C Version 2.0 From Version 1.0

• change the argument lists of the highest-order functions: body designations are now
structures instead of simple (short) integers. This accommodates a wider range of body
types.

• added direct support for USNO minor planet ephemerides (USNO/AE98) and indirect
support for other ephemerides with new function ephemeris.

• added support for latest (1997 CD-ROM) version of the JPL solar system ephemeris
software in solsys2.c and jplint.c

• incorporated IAU 1994 (IERS 1996) definition of the sidereal time (implemented as a
change to the calculation of the equation of the equinoxes in function earthtilt).

• generalized data structure used to contain star catalog data (cat_entry in novas.h)

• added new function make_cat_entry that creates a cat_entry data structure from
“loose” star catalog data.

• added two new functions (transform_hip and transform_cat) to support use of non-FK5
data in NOVAS-C. Specifically, transform_hip supports use of Hipparcos data.

• added two new functions (equ2hor and refract) to support transformation of equatorial
coordinates to horizon coordinates, with refraction optional.

• created new function, fund_args, which contains the fundamental arguments of the
nutation series.

• created global variables PSI_COR and EPS_COR and function cel_pole to provide
observed celestial pole offsets.

• changed names of several low-level functions to be more descriptive:
 geocentric to bary_to_geo

nutation to nutation_angles
 convert_tdb2tdt to tdb2tdt

• update function tdb2tdt using expressions for mean elements referred to J2000 epoch
and reference system.

• changed type of function precession from short int to void

• TT time scale is used interchangeably with TDT time scale.

42

• constants:
 - moved f and omega from function terra to file novascon.c.

- updated value of C in AU/day.
- updated value of OMEGA.
- updated value of T0.
- removed PI from novascon.c to avoid conflict with definition of PI in Linux

math.h.

• changed name of sun function in solsys3.c to sun_eph to fix problem on Sun Unix
systems.

• updated prologs and documentation.

• cosmetic changes.

43

6.0 Acknowledgements

Thomas K. Buchanan, working as part of the U.S. Naval Observatory/Naval Research
Laboratory Optical Interferometer team, did the initial conversion of many of the
NOVAS Fortran subroutines to C.

William T. Harris of the Astronomical Applications Department of the U.S. Naval
Observatory was largely responsible for completing the conversion of the NOVAS
Fortran subroutines to C, and for NOVAS-C Version 1.0.

David Buscher, James Hilton, Christian Hummel, and Sandra Martinka, users of
preliminary versions of the NOVAS-C package, provided valuable comments and
suggestions.

44

7.0 Notes, References, And URLs

1. Kaplan, G. (1990), Bulletin of the American Astronomical Society, Vol. 22, pp. 930-
931.

2. See explanation and references at http://aa.usno.navy.mil/AA/faq/docs/ICRS_doc.html

3. ESA, 1997, The Hipparcos and Tycho Catalogues, ESA SP-1200. See also
http://astro.estec.esa.nl/Hipparcos/catalog.html

4. See http://aries.usno.navy.mil/ad/act/act.html

5. See http://maia.usno.navy.mil/ICRF/

6. The JPL ephemerides are available free for download from ftp server
navigator.jpl.nasa.gov/ephem/export or on CD-ROM for a modest fee from
Willmann-Bell, Inc. http://www.willbell.com/software/jpl.htm

7. See http://hpiers.obspm.fr/

8. Hilton, J. (1999), Astronomical Journal, Vol. 117, pp. 1077-1086. See also
http://aa.usno.navy.mil/hilton/ephemerides/asteroid_ephemerides.html

9. Kaplan, G., et al. (1989) Astronomical Journal, Vol. 97, p. 1197.

10. Kaplan, G. (1998) Astronomical Journal, Vol. 115, p. 361

11. The Astronomical Almanac and other related publications are described at
http://aa.usno.navy.mil/AA/publications/docs/almanacs.html

12. See http://maia.usno.navy.mil/

